If it's not what You are looking for type in the equation solver your own equation and let us solve it.
512=-16t^2+192t
We move all terms to the left:
512-(-16t^2+192t)=0
We get rid of parentheses
16t^2-192t+512=0
a = 16; b = -192; c = +512;
Δ = b2-4ac
Δ = -1922-4·16·512
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-64}{2*16}=\frac{128}{32} =4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+64}{2*16}=\frac{256}{32} =8 $
| 2x×2x+9x=0 | | 3(x-3)=7x-33 | | -5(4v-2)+4v=2(v+8) | | 71-g=-18 | | 3+x-3x2=9 | | 71−g=-18 | | 9(s-100)+48=-24 | | 5x=3=x+11 | | -3(-7x+8)-2x=5(x-6)-2 | | 3x+72=18x-468 | | 42-x=-54 | | 5x+2=7x=6 | | 9(s−100)+48=-24 | | 10(j+6)=80 | | -10=-3(q-5)+-1 | | 1+11x=31=x | | -10=-3(q−5)+-1 | | 3(s+6)=3 | | x+4x−7=0 | | 9=2(s+1)+3 | | x2+4x−7=0 | | 2(m+7)+10=8 | | -(r-4)=-3 | | 11-z=17 | | 2v-30=-7(v-6) | | 5-p=-4 | | 2-u=11 | | 6=-8x+6(x+3) | | 20-6n=2(n=60 | | 3(h+1)=6 | | 9x2+6x-4=0 | | -16x^2+98=0 |